Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression. However, at the post-transcriptional level, the mechanism by which ABA can regulate plant biological processes by mediating alternative splicing is not well understood. Therefore, this paper briefly introduces the mechanism of ABA-induced alternative splicing and the role of ABA mediating AS in plant response to the environment and its own growth.

Details

Title
ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing
Author
Yang, Xue 1 ; Jia, Zichang 1 ; Pu, Qiong 2 ; Tian, Yuan 1 ; Zhu, Fuyuan 3   VIAFID ORCID Logo  ; Liu, Yinggao 1 

 State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; [email protected] (X.Y.); [email protected] (Z.J.); [email protected] (Y.T.) 
 Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; [email protected]; College of Mechanical and Electronic Engineering, Shandong Agriculture and Engineering University, Jinan 250000, China 
 Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; [email protected] 
First page
3796
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649058406
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.