Abstract

Doc number: S16

Abstract

Background: Transcriptional regulation in multi-cellular organisms is a complex process involving multiple modular regulatory elements for each gene. Building whole-genome models of transcriptional networks requires mapping all relevant enhancers and then linking them to target genes. Previous methods of enhancer identification based either on sequence information or on epigenetic marks have different limitations stemming from incompleteness of each of these datasets taken separately.

Results: In this work we present a new approach for discovery of regulatory elements based on the combination of sequence motifs and epigenetic marks measured with ChIP-Seq. Our method uses supervised learning approaches to train a model describing the dependence of enhancer activity on sequence features and histone marks. Our results indicate that using combination of features provides superior results to previous approaches based on either one of the datasets. While histone modifications remain the dominant feature for accurate predictions, the models based on sequence motifs have advantages in their general applicability to different tissues. Additionally, we assess the relevance of different sequence motifs in prediction accuracy showing that even tissue-specific enhancer activity depends on multiple motifs.

Conclusions: Based on our results, we conclude that it is worthwhile to include sequence motif data into computational approaches to active enhancer prediction and also that classifiers trained on a specific set ofenhancers can generalize with significant accuracy beyond the training set.

Details

Title
Active enhancer positions can be accurately predicted from chromatin marks and collective sequence motif data
Author
Podsiadlo, Agnieszka; Wrzesien, Mariusz; Paja, Wieslaw; Rudnicki, Witold; Wilczynski, Bartek
Pages
S16
Publication year
2013
Publication date
2013
Publisher
BioMed Central
e-ISSN
1752-0509
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1468026298
Copyright
© 2013 Podsiadlo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.