Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aspect-based sentiment analysis is a fine-grained sentiment analysis task that consists of two types of subtasks: aspect term extraction and aspect sentiment classification. In the aspect term extraction task, current methods suffer from the lack of fine-grained information in aspect term extraction and difficulty in identifying aspect term boundaries. In the aspect sentiment classification task, the current aspect sentiment classifier cannot adapt itself to the text and determine the local context. To address these two challenges, this work proposes an adaptive semantic relative distance approach based on dependent syntactic analysis, which uses adaptive semantic relative distance to determine the appropriate local context for each text and increase the accuracy of sentiment analysis. Meanwhile, the study also predicts the current word labels by combining local information features extracted by local convolutional neural networks and global information features to precisely locate the word labels. In two subtasks, our proposed model improves accuracy and F1 scores on the SemEval-2014 Task 4 Restaurant and Laptop datasets compared to the state-to-the-art approaches, especially in the aspect sentiment classification subtask.

Details

Title
Adaptive Local Context and Syntactic Feature Modeling for Aspect-Based Sentiment Analysis
Author
Huang, Jie 1   VIAFID ORCID Logo  ; Cui, Yunpeng 1   VIAFID ORCID Logo  ; Wang, Shuo 2   VIAFID ORCID Logo 

 Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural, Beijing 100081, China; Agriculture Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
 Commonwealth Scientific and Industrial Research Organisation, Sydney 2122, Australia 
First page
603
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761126758
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.