It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, zeolite NaA was fabricated from rice husk ash before combining with Fe3O4 to form a magnetic NaA/Fe3O4 composite. NaA/Fe3O4 composite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer Emmett Teller (BET). The surface area and the pore size of zeolite NaA/Fe3O4 was 24.11 m2.g−1 and 23.04 Å. In addition, batch adsorption studies were carried out for the removal of chromium (VI) ion in aqueous solution. The effects of adsorption parameters, including pH solution, initial concentration of Cr (VI) ions, mass of adsorbent, and contact time were investigated. The maximum equilibrium adsorption capacity of zeolite NaA and NaA/Fe3O4 was 22.554 mg.g−1 and 13.722 mg.g−1, respectively. The pseudo-first order kinetic model fitted well to the experimental data. The regeneration of the adsorbent was also investigated for three cycles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Chemical Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho City, Vietnam