Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of infrared detectors based on epitaxially grown semiconductors such as HgCdTe, InSb and InGaAs is limited by their high cost and difficulty in raising operating temperature. The development of infrared detectors depends on cheaper materials with high carrier mobility, tunable spectral response and compatibility with large-scale semiconductor processes. In recent years, the appearance of mercury telluride colloidal quantum dots (HgTe CQDs) provided a new choice for infrared detection and had attracted wide attention due to their excellent optical properties, solubility processability, mechanical flexibility and size-tunable absorption features. In this review, we summarized the recent progress of HgTe CQDs based infrared detectors, including synthesis, device physics, photodetection mechanism, multi-spectral imaging and focal plane array (FPA).

Details

Title
Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots
Author
Zhang, Shuo; Hu, Yao; Hao, Qun
First page
760
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2431663866
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.