Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Flotation is the conventional method for processing porphyry copper deposits, one of the most economically important sources of copper (Cu) worldwide. The rapidly decreasing grade of this type of Cu ore in recent years, however, presents serious problems with fine particle recovery using conventional flotation circuits. This low recovery could be attributed to the low collision efficiency of fine particles and air bubbles during flotation. To improve collision efficiency and flotation recovery, agglomeration of finely ground chalcopyrite (CuFeS2) (D50 = 3.5 μm) using emulsified oil stabilized by emulsifiers was elucidated in this study. Specifically, the effects of various types of anionic (sodium dodecyl sulfate (SDS), potassium amyl xanthate (KAX)), cationic (dodecyl amine acetate (DAA)), and non-ionic (polysorbate 20 (Tween 20)) emulsifiers on emulsified oil stability and agglomeration–flotation efficiency were investigated. When emulsifiers were added, the average size of agglomerates increased, resulting in higher Cu recovery during flotation. This dramatic improvement in flotation efficiency could be attributed to the smaller oil droplet size in emulsified oil and their higher stability in the presence of emulsifiers. The utilization of emulsifiers during agglomeration–flotation not only lowered the required agitation strength for agglomeration but also shortened the agglomeration time, both of which made the process easier to incorporate in existing flotation circuits.

Details

Title
Agglomeration–Flotation of Finely Ground Chalcopyrite Using Emulsified Oil Stabilized by Emulsifiers: Implications for Porphyry Copper Ore Flotation
Author
Hornn, Vothy; Ito, Mayumi; Shimada, Hiromasa; Carlito Baltazar Tabelin  VIAFID ORCID Logo  ; Jeon, Sanghee; Park, Ilhwan; Hiroyoshi, Naoki
First page
912
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2423347132
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.