It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Este artículo presenta una visión general de los temas de investigación de Alan Turing, centrado en los desarrollos y aportes a la Teoría de la Calculabilidad. Basándose en los lineamientos sobre el problema de la decisión (Entscheindungs problem) de D. Hilbert y con el fin de dar una respuesta a la pregunta: ¿la Axiomática formal cuenta con un método efectivo para decidir que una fórmula puede ser verdadera o falsa?, Turing responde con una negativa por medio de un método mecanicista llamado la máquina de Turing, que prueba la indecidibilidad de la Axiomática y presenta las bases de la Calculabilidad, y posteriormente la de la Informática.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer