Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A shift from a linear economy to a circular economy of resource consumption is vital for diverting the value from lost resources to resource-efficient products towards developing a sustainable system. Household digesters provide one opportunity to create a biogas-based circular economy. Because household digesters are typically fed a wide and variable range of substrates, it is important to determine the ideal mixing ratios for them. In this study, an anaerobic digester startup process was analyzed and an assessment of anaerobic co-digestion of food waste with different livestock manures was carried out at ambient temperatures. Food waste (FW), cow manure (CM), poultry litter (PL) and goat manure (GM) were co-digested at mixing ratios (FW:PL:CM) of 2:1:1, 2:2:1, 1:1:2, 1:1:1 (wt/wt) and FW:PL:GM at mixing ratios of 2:1:1 and 1:1:2, at an organic loading rate of 1 g volatile solid (VS)/L/day, and 8% total solids. A maximum methane yield was obtained from co-digestion of FW:PL:GM at a mixing ratio of 2:1:1 in autumn-to-winter conditions, 21–10 °C, while the mixing ratio of FW:PL:CM at 2:2:1, showed negligible methane production under the same temperature condition. This study suggests that co-digestion of food waste and poultry litter with goat manure yields more biogas than other substrate combinations. Therefore, selecting suitable co-substrates with an optimized mixing ratio can promote several key indicators of a biogas-based circular economy towards achieving sustainable development goals 2, 3, 5, 6, 7, 9, 13 and 15.

Details

Title
Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals
Author
Dhungana, Bipasyana 1   VIAFID ORCID Logo  ; Sunil Prasad Lohani 1   VIAFID ORCID Logo  ; Marsolek, Michael 2 

 Renewable and Sustainable Energy Laboratory, Department of Mechanical Engineering, Kathmandu University, Dhulikhel 6250, Nepal; [email protected] 
 Department of Civil and Environmental Engineering, Seattle University, Seattle, WA 98122, USA; [email protected] 
First page
3307
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642670039
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.