Full Text

Turn on search term navigation

Copyright © 2021 Anzhen Qin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Soil water content (SWC, % vol) is a key factor affecting plant growth and development. SWC measurement is vital to rational use of water resources for irrigation, and the accuracy of sensors in SWC measurement is of significant importance to smart data-driven irrigation. Here, a laboratory experiment and a field lysimetric experiment were conducted to evaluate the accuracy of Insentek sensors under various soil conditions (1.1 to 1.5 bulk densities and sand to clay soil textures) and irrigation levels (30, 45, and 60 mm), in 2018 and 2019. A microweighing lysimeter and oven-drying method were used as standard methods to compare the Insentek method. The root mean square error (RMSE, % vol) and relative prediction deviation (RPD) between the Insentek and microlysimetric SWC values were 0.89–1.04% vol and 5.6–6.8, respectively, under laboratory condition. The RPD value is larger than the threshold value of 4.0, indicating the accuracy of the Insentek sensors is reliable under laboratory condition. Except for 60 mm irrigation treatment, the RMSE between Insentek and the oven-drying method under field condition was 1.44–1.93% vol, and the RPD value was 1.56–1.93, lower than the threshold value of 4.0. The tiny gap between the Insentek sensor and soil may accelerate water infiltration along the probe 0-3 d after irrigation while increase air filling 5–7 d after irrigation, causing greater RMSE and lower RPD values. The dissatisfied performance in field condition may also be associated with the obvious drawbacks of oven-drying method, such as disturbance in soil sampling. When using oven-drying method to analyze the accuracy of the Insentek sensors in field condition, the concerns should be well addressed.

Details

Title
Analysis of the Accuracy of an FDR Sensor in Soil Moisture Measurement under Laboratory and Field Conditions
Author
Qin, Anzhen 1   VIAFID ORCID Logo  ; Ning, Dongfeng 1   VIAFID ORCID Logo  ; Liu, Zhandong 1   VIAFID ORCID Logo  ; Duan, Aiwang 1 

 Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China 453002, 
Editor
Jingwei Wang
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2520674731
Copyright
Copyright © 2021 Anzhen Qin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/