Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To analyze the process of wet clay soil adhering to the rotary tillage part during rotary tillage in paddy field, simulation tests were carried out based on the discrete element method (DEM) in this study. The Plackett-Burman (PB) test was applied to obtain simulation parameters that significantly affected the soil adhesion mass. The Box-Behnken design (BBD) based on the principle of response surface method (RSM) was used to establish a regression model between significant parameters and soil adhesion mass. The soil adhesion mass obtained from the actual soil bin test as the response value was brought into the regression model. The optimal simulation parameters were obtained: the particle-particle coefficient of rolling friction, the particle-geometry coefficient of static friction, and the particle-particle JKR (Johnson-Kendall-Roberts) surface energy were 0.09, 0.81, and 61.55 J·m−2, respectively. The reliability of the parameters was verified by comparing the soil adhesion mass obtained under the optimal simulation parameters with the actual test value, and the relative error was 1.84%. Analysis of the rotary tillage showed that soil adhesion was mainly concentrated in the sidelong section of the rotary blade. The maximum number of upper soil particles adhering to the rotary tillage part was 2605 compared to the middle soil and lower soil layers. The longer the distance the rotary tillage part was operated in the soil for, the more soil particles would adhere to it. This study can provide a reference for the rational selection of simulation parameters for rotary tillage and the analysis of soil adhesion process in rotary tillage.

Details

Title
Analysis of Adhesion between Wet Clay Soil and Rotary Tillage Part in Paddy Field Based on Discrete Element Method
Author
Cheng, Jian 1 ; Zheng, Kan 1 ; Xia, Junfang 1 ; Liu, Guoyang 1 ; Liu, Jiang 1 ; Li, Dong 1 

 College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (J.C.); [email protected] (J.X.); [email protected] (G.L.); [email protected] (L.J.); [email protected] (D.L.); Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China 
First page
845
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532350193
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.