Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Construction costs and investment planning are the decisions made by construction managers and financial managers. Investment in construction materials, labor, and other miscellaneous should consider their huge costs. For these reasons, this research focused on analyzing construction costs from the point of adopting multivariate cost prediction models in predicting construction cost index (CCI) and other independent variables from September 2021 to December 2022. The United States was selected as the focal country for the study because of its size and influence. Specifically, we used the Statistical Package for Social Sciences (SPSS) software and R-programming applications to forecast the elected variables based on the literature review. These forecasted values were compared to the CCI using Pearson correlations to assess influencing factors. The results indicated that the ARIMA model is the best forecasting model since it has the highest model-fit correlation. Additionally, the number of building permits issued, the consumer price index, the amount of money supply in the country, the producer price index, and the import price index are the influencing factors of investments decisions in short to medium ranges. This result provides insights to managers and cost planners in determining the best model to adopt. The improved accuracies of the influencing factors will help to enhance the control, competitiveness, and capability of futuristic decision-making of the cost of materials and labor in the construction industry.

Details

Title
Analysis of Construction Cost and Investment Planning Using Time Series Data
Author
Jiang, Fengchang 1   VIAFID ORCID Logo  ; Awaitey, John 2   VIAFID ORCID Logo  ; Xie, Haiyan 2   VIAFID ORCID Logo 

 Institute of Architectural Engineering, Taizhou Polytechnic College, Taizhou 225300, China; [email protected] 
 Department of Technology, Illinois State University, Normal, IL 61790, USA; [email protected] 
First page
1703
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627846463
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.