Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the effects of electric vehicles, whose usage rate is increasing day by day in the world, on the existing electricity grid have been studied. EV charging stations and similar non-linear loads cause various harmful effects on power systems such as phase imbalances, the effect of harmonic formation, energy quality, voltage, and current imbalance. The study focuses on the harmonic effects of EV charging stations at the point where they are connected to the grid and at lower voltage levels by using IEEE 6-, 14-bus, and 30-bus test power systems. In addition to the existing loads in these grid systems, the effects on the grid as a result of drawing electrical energy from the grid for charging electric vehicles are investigated. These effects have shown how these charging stations on the grid have changed, considering the fact that the number of electric vehicles and the number of charging stations increased over the years when a single electric vehicle provided energy from the grid, and the grid was not renewed. The response of the network to the increase in the load that will occur in addition to the current loads, its harmonic effects, and the effects of the current grid on the increase in the electric vehicle growth rate over the years have been predicted and examined by using artificial neural networks. Solution suggestions are presented for power networks in similar situations.

Details

Title
Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network
Author
Kadir Olcay 1   VIAFID ORCID Logo  ; Çetinkaya, Nurettin 2   VIAFID ORCID Logo 

 Dumlupınar Vocational School, Kutahya Dumlupınar University, 43820 Kutahya, Turkey 
 Department of Electrical and Electronics Engineering, Konya Technical University, 42250 Konya, Turkey 
First page
1282
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774892548
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.