It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a hybrid power generation system modeling and simulation with the objective of electricity sale to distribution network (DN) which consists of photovoltaic (PV) module, proton exchange membrane (PEM) fuel cell (FC), hydrogen storage tank (HST) and electrolyzer (EL).Since last researches in optimal FC and PV application aimed in power electronic approach, In this paper the application between FC and PV is considered with the aim of maximizing profit gained due to electricity sale revenue to DN. The revenue from electricity sale to DN considering electricity price in low load, shoulder load and peak load hours is considered as the system profit. Also in a sensitivity analysis the impact of technical parameters of hybrid system components is investigated on system profit. The results showed that the system saves the electricity by hydrogen storage in HST in low load hours and sale it with more prices in shoulder load hours to DN. Also the obtained results show that several technical parameters of PV and PEM FC have considerable impact on system operation and profit.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer