Abstract

Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models. In chemistry, ML has been used to develop models for predicting molecular properties, for example quantum mechanics (QM) calculated potential energy surfaces and atomic charge models. The ANI-1x and ANI-1ccx ML-based general-purpose potentials for organic molecules were developed through active learning; an automated data diversification process. Here, we describe the ANI-1x and ANI-1ccx data sets. To demonstrate data diversity, we visualize it with a dimensionality reduction scheme, and contrast against existing data sets. The ANI-1x data set contains multiple QM properties from 5 M density functional theory calculations, while the ANI-1ccx data set contains 500 k data points obtained with an accurate CCSD(T)/CBS extrapolation. Approximately 14 million CPU core-hours were expended to generate this data. Multiple QM calculated properties for the chemical elements C, H, N, and O are provided: energies, atomic forces, multipole moments, atomic charges, etc. We provide this data to the community to aid research and development of ML models for chemistry.

Measurement(s)

Quantum Mechanics • energy • force • multipole moment • atomic charge

Technology Type(s)

computational modeling technique

Factor Type(s)

atom

Sample Characteristic - Environment

organic molecule

Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12046440

Details

Title
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
Author
Smith, Justin S 1   VIAFID ORCID Logo  ; Zubatyuk Roman 2 ; Nebgen Benjamin 3 ; Lubbers, Nicholas 4 ; Barros Kipton 4 ; Roitberg, Adrian E 5 ; Isayev Olexandr 6   VIAFID ORCID Logo  ; Tretiak Sergei 3   VIAFID ORCID Logo 

 Los Alamos National Laboratory, Center for Nonlinear Studies, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079); Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079); Carnegie Mellon University, Department of Chemistry, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344) 
 Los Alamos National Laboratory, Theoretical Division, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, USA (GRID:grid.148313.c) (ISNI:0000 0004 0428 3079) 
 University of Florida, Department of Chemistry, Gainesville, USA (GRID:grid.15276.37) (ISNI:0000 0004 1936 8091) 
 Carnegie Mellon University, Department of Chemistry, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20524463
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2397226743
Copyright
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.