Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.

Details

Title
Antimicrobial Nanomaterials for Food Packaging
Author
Suvarna, Vasanti 1 ; Nair, Arya 2 ; Mallya, Rashmi 2 ; Khan, Tabassum 1   VIAFID ORCID Logo  ; Abdelwahab Omri 3   VIAFID ORCID Logo 

 Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; [email protected] 
 Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; [email protected] (A.N.); [email protected] (R.M.) 
 The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada 
First page
729
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679645347
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.