Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Streptococcus agalactiae, referred to as Group B Streptococcus (GBS), is a prominent bacterium causing life-threatening neonatal infections. Although antibiotics are efficient against GBS, growing antibiotic resistance forces the search for alternative treatments and/or prevention approaches. Antimicrobial photodynamic inactivation (aPDI) appears to be a potent alternative non-antibiotic strategy against GBS. Methods: The effect of rose bengal aPDI on various GBS serotypes, Lactobacillus species, human eukaryotic cell lines and microbial vaginal flora composition was evaluated. Results: RB-mediated aPDI was evidenced to exert high bactericidal efficacy towards S. agalactiae in vitro (>4 log10 units of viability reduction for planktonic and >2 log10 units for multispecies biofilm culture) and in vivo (ca. 2 log10 units of viability reduction in mice vaginal GBS colonization model) in microbiological and metagenomic analyses. At the same time, RB-mediated aPDI was evidenced to be not mutagenic and safe for human vaginal cells, as well as capable of maintaining the balance and viability of vaginal microbial flora. Conclusions: aPDI can efficiently kill GBS and serve as an alternative approach against GBS vaginal colonization and/or infections.

Details

Title
Antimicrobial Photodynamic Inactivation: An Alternative for Group B Streptococcus Vaginal Colonization in a Murine Experimental Model
Author
Pierański, Michał K 1   VIAFID ORCID Logo  ; Kosiński, Jan G 2   VIAFID ORCID Logo  ; Szymczak, Klaudia 1   VIAFID ORCID Logo  ; Sadowski, Piotr 3   VIAFID ORCID Logo  ; Grinholc, Mariusz 1   VIAFID ORCID Logo 

 Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland 
 Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland 
 Department of Pathomorphology, University Hospital in Kraków, 31-501 Kraków, Poland 
First page
847
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806460895
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.