Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electrical power transformers are the most exorbitant and tactically prominent components of the South African electrical power grid. In contrast, they are burdened by internal winding faults predominantly on account of insulation system failure. It is essential that these faults must be swiftly and precisely uncovered and suitable measures should be adopted to separate the faulty unit from the entire system. The frequency response analysis (FRA) is a technique for tracking a transformer’s mechanical integrity. Nevertheless, classifying the category of the fault and its gravity by benchmarking measured FRA responses is still backbreaking and for the most part, anchored in personnel proficiency. This work presents a quantum leap to normalize the FRA interpretation procedure by suggesting an interpretation code criteria based on an empirical survey of transformers ranging from 315 kVA to 40 MVA. The study then proposes an analysis of variance (ANOVA) based interpretation tool for diagnosing the statistical significance of FRA fingerprint and measured profiles. The latter cannot be relied upon by an expert or by the naked eye. Additionally, descriptive FRA frequency sub-region data statistics are proposed to evaluate the shift in both the magnitude and measuring frequency characteristics to formulate the recommended interpretation code criteria. To corroborate the code criteria by incorporating ANOVA and descriptive statistics, the study presents various case studies with unknown FRA profiles for fault diagnosis. The results constitute proof of the reliability of the proposed code criteria and a proposed hybrid of ANOVA and descriptive statistics.

Details

Title
Application of the Analysis of Variance (ANOVA) in the Interpretation of Power Transformer Faults
Author
Thango, Bonginkosi A  VIAFID ORCID Logo 
First page
7224
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724243837
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.