Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Short-term building energy consumption prediction is of great significance for the optimized operation of building energy management systems and energy conservation. Due to the high-dimensional nonlinear characteristics of building heat loads, traditional single machine-learning models cannot extract the features well. Therefore, in this paper, a combined model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), four deep learning (DL), and the autoregressive integrated moving average (ARIMA) models is proposed. The DL models include a convolution neural network, long- and short-term memory (LSTM), bi-directional LSTM (bi-LSTM), and the gated recurrent unit. The CEEMDAN decomposed the heating load into different components to extract the different features, while the DL and ARIMA models were used for the prediction of heating load features with high and low complexity, respectively. The single-DL models and the CEEMDAN-DL combinations were also implemented for comparison purposes. The results show that the combined models achieved much higher accuracy compared to the single-DL models and the CEEMDAN-DL combinations. Compared to the single-DL models, the average coefficient of determination (R2), root mean square error (RMSE), and coefficient of variation of the RMSE (CV-RMSE) were improved by 2.91%, 47.93%, and 47.92%, respectively. Furthermore, CEEMDAN-bi-LSTM-ARIMA performed the best of all the combined models, achieving values of R2 = 0.983, RMSE = 70.25 kWh, and CV-RMSE = 1.47%. This study provides a new guide for developing combined models for building energy consumption prediction.

Details

Title
Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions
Author
Zhou, Yong 1   VIAFID ORCID Logo  ; Wang, Lingyu 2 ; Qian, Junhao 2 

 School of Management, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China 
 School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China; [email protected] (L.W.); [email protected] (J.Q.) 
First page
7349
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679840028
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.