Full Text

Turn on search term navigation

© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Theories in soil biology, such as plant–microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below‐ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above‐ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost‐effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature‐based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.

Details

Title
Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration
Author
Sharma, Radhey Shyam 1   VIAFID ORCID Logo  ; Karmakar, Swagata 1   VIAFID ORCID Logo  ; Kumar, Pankaj 1   VIAFID ORCID Logo  ; Mishra, Vandana 1   VIAFID ORCID Logo 

 Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India 
Pages
2263-2304
Section
HYPOTHESES
Publication year
2019
Publication date
Feb 2019
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2268278048
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.