Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human failures occur in nuclear power plants when operators are under acute stress. Therefore, an automatic stressed recognition system should be developed for nuclear power work. Previous studies on the prediction of stress are limited because of their reliance on subjective ratings and contact physiological measurement. To solve this problem, we developed a non-intrusive way by using voice features to detect stress. We aim to build a system that can estimate the level of stress from speech which may be applied to nuclear power plants where operators engage in regular verbal communication as part of their duties. In this study, we collected voice recordings from 34 participants during a simulated nuclear plant power task in a time-limited situation that requires high cognitive resources. Mel frequency cepstrum coefficients (MFCCs) were extracted from stressed voice samples and the neural network model was used to assess stress levels continuously. The experimental results showed that voice features can provide satisfactory predictions of the stress state. Mean relative errors of prediction are possible within approximately 5%. We discuss the implications of the use of voice as a minimally intrusive means for monitoring the effects of stress on cognitive performance in practical applications.

Details

Title
Application of Speech on Stress Recognition with Neural Network in Nuclear Power Plant
Author
Chen, Jiaqi 1   VIAFID ORCID Logo  ; Wu, Bohan 1 ; Xie, Kaijie 1 ; Ma, Shu 1 ; Yang, Zhen 1 ; Shen, Yi 2 

 Department of Psychology, Zhejiang Sci-Tech Campus University, Hangzhou 310000, China 
 Department of Mathematics, Zhejiang Sci-Tech Campus University, Hangzhou 310000, China 
First page
779
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767181526
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.