It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The self-healing mechanism of bituminous mixtures was demonstrated through several studies and was recognised for developing sustainable road pavement. This paper presents a comprehensive summary of various studies related to steel fibre as a self-healing mechanism of bituminous materials. Based on the extensive literature, it was found that steel fibre was likely to be used in the asphalt industry due to several benefits. First, the idea of using steel fibre in pavement engineering materials gives great attention to their utilisation in asphalt. It helps increase the self-healing mechanism and contribute to reducing the problem related to potholes, ravelling, slipping during raining while driving and many more. Second, this study identifies the gap of research for future research in pavement engineering. Finally, some proposals were made for the possible construction of self-healing asphalt.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40000, Selangor, Malaysia
2 School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40000, Selangor, Malaysia; institute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA (UiTM), Shah Alam, 40000, Selangor, Malaysia