Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Under the emerging topic of machine vision technology replacing manual examination, automatic optical inspection (AOI) technology has been adopted for the detection of defects in semi-finished/finished products and is widely used for the defect detection of printed circuit boards (PCB) in electronic industries where surface mount technology (SMT) is applied. In order to convert images from gray-scale to binary in the PCB process, a strict threshold value was set for AOI to prevent ‘escapes’, but this can lead to serious false alarm because of unwanted noises. Therefore, they tend to set up a Noise-Removal procedure after AOI, which increases the computational cost. By applying deep learning to circuit images of the ceramic substrates in AOI, this paper aimed to construct an automatic defect detection system that could also identify the categories as well as the locations of defects. This study proposed and evaluated three models with integrated structures: ResNeXt+YOLO v3, Inception v3+YOLO v3, and YOLO v3. The outcomes indicate that the defect detection system built on ResNeXt+YOLO v3 could most effectively detect standard images that had been misidentified as defects by AOI, categorize genuine defects, and find their location. The proposed method could not only increase the inspection accuracy to 99.2%, but also help decrease the cost of human resources generated by manual re-examination.

Details

Title
Applying Deep Learning to Construct a Defect Detection System for Ceramic Substrates
Author
Chien-Yi, Huang 1 ; I-Chen, Lin 1 ; Yuan-Lien, Liu 2 

 National Taipei University of Technology, Taipei City 106, Taiwan; [email protected] 
 Taiwan Semiconductor Manufacturing Company, Hsinchu 300, Taiwan; [email protected] 
First page
2269
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637585862
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.