Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There are many ways to maintain the safety of workers on a working site, such as using a human supervisor, computer supervisor, and smoke–flame detecting system. In order to create a safety warning system for the working site, the machine-learning algorithm—Haar-cascade classifier—was used to build four different classes for safety equipment recognition. Then a proposed algorithm was applied to calculate a score to determine the dangerousness of the current working environment based on the safety equipment and working environment. With this data, the system decides whether it is necessary to give a warning signal. For checking the efficiency of this project, three different situations were installed with this system. Generally, with the promising outcome, this application can be used in maintaining, supervising, and controlling the safety of a worker.

Details

Title
Applying the Haar-cascade Algorithm for Detecting Safety Equipment in Safety Management Systems for Multiple Working Environments
Author
Le Tran Huu Phuc  VIAFID ORCID Logo  ; Jeon, HyeJun
First page
1079
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548393619
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.