Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Assessing planting to ensure well-distributed plants is important to achieve high yields. Digital farming has been helpful in these field assessments. However, these techniques are at most times not available for smallholder farmers or low-income regions. Thus, to contribute such producers, we developed two methods to assess intra-row spacing in commercial fields using mobile photos and simple image processing. We assessed a maize field after mechanized planting in 7 and 12 days after planting (DAP) and in two farming systems (conventional and no-till) to acquire images at height of one meter and perpendicular to the ground. In the first method, we used morphological operations based on the HSV scale and the center of mass to extract the region of interest (ROI) corresponding to the maize plant. In the second method, we used local maxima equations (Peaks) to find prominence values corresponding to the maize plant and extract their coordinates. No-till images were deleted due to excessive weeds. Thus, before acquiring the images, it is necessary to remove these elements (e.g., no-till adapted). The methods achieved an overall RMSE of 3.48 cm (<5.63 cm) and R² of 0.90 (>0.71) between the actual and estimated spacing. Precision and recall were higher than 0.88. There was no difference between actual and estimated CV values, except in conventional tillage in 7 DAP using ROI due to leaves overlapping. The method Peaks was more accurate to detect multiple spacing but miss spacing was correctly detected in both methods. However, the larger the plant leaves, the worse the detection. Thus, our proposed methods were satisfactory and are promising for assessing planting in a remote and accessible way.

Details

Title
Assessing Intra-Row Spacing Using Image Processing: A Promising Digital Tool for Smallholder Farmers
Author
Vinicius Dos Santos Carreira 1   VIAFID ORCID Logo  ; Tedesco, Danilo 1   VIAFID ORCID Logo  ; Alexandre Dos Santos Carreira 2 ; Rouverson Pereira da Silva 1   VIAFID ORCID Logo 

 Department of Rural Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences (Unesp/FCAV), São Paulo State University, Jaboticabal 14884-900, SP, Brazil; [email protected] (D.T.); [email protected] (R.P.d.S.) 
 Department of Product Validation, Jacto Agrícola, Pompéia 17580-000, SP, Brazil; [email protected] 
First page
301
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632186016
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.