Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Worldwide, sandy coastlines are affected by extensive wind and water erosion. Both soil quality and periodic drought present major problems for sand dune restoration projects. Hence, soil amendments are needed to improve soil quality and enhance soil restoration efficiency. The jellyfish population has increased in some aquatic ecosystems and is often considered as a nuisance because of their negative impacts on marine ecosystem productivity as well as coastal attractiveness. Thus, development of new products derived from jellyfish biomass has received attention from researchers although utilization is still at a preliminary stage. Herein, our main objective was to test seed germination, seedling establishment, and seedling vitality of annual ryegrass (Lolium multiflorum L.) when supplied with organic soil amendment from two different jellyfish species (Aurelia aurita and Cyanea capillata) in comparison with an unfertilized control and mineral fertilizer treatment. We hypothesized that jellyfish dry matter as an organic soil amendment would improve seed germination and seedling establishment in sand dune environments. Germination and seedling growth experiments were conducted in the laboratory and greenhouse. The results indicate that jellyfish enhanced seedling growth and establishment in sand dune soil significantly (p < 0.05 and p < 0.01) under water scarcity conditions. Therefore, jellyfish may have potential for an auxiliary role in sand dune restoration projects in coastal areas in the future.

Details

Title
Assessing the Potential of Jellyfish as an Organic Soil Amendment to Enhance Seed Germination and Seedling Establishment in Sand Dune Restoration
Author
Emadodin, Iraj; Reinsch, Thorsten  VIAFID ORCID Logo  ; Raffaele-Romeo Ockens; Taube, Friedhelm
First page
863
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2416021121
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.