Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pearl River Delta (PRD), as one of the most densely populated regions in the world, is facing both natural changes (e.g., sea level rise) and human-induced changes (e.g., dredging for navigation and land reclamation). Bathymetric information is thus important for the protection and management of the estuarine environment, but little effort has been made to comprehensively evaluate the performance of different methods and datasets. In this study, two linear regression models—the linear band model and the log-transformed band ratio model, and two non-linear regression models—the support vector regression model and the random forest regression model—were applied to Landsat 8 (L8) and Sentinel-2 (S2) imagery for bathymetry mapping in 2019 and 2020. Results suggested that a priori area clustering based on spectral features using the K-means algorithm improved estimation accuracy. The random forest regression model performed best, and the three-band combinations outperformed two-band combinations in all models. When the non-linear models were applied with three-band combination (red, green, blue) to L8 and S2 imagery, the Root Mean Square Error (Mean Absolute Error) decreased by 23.10% (35.53%), and the coefficient of determination (Kling-Gupta efficiency) increased by 0.08 (0.09) on average, compared to those using the linear regression models. Despite the differences in spatial resolution and band wavelength, L8 and S2 performed similarly in bathymetry estimation. This study quantified the relative performance of different models and may shed light on the potential combination of multiple data sources for more timely and accurate bathymetry mapping.

Details

Title
Assessment of Empirical Algorithms for Shallow Water Bathymetry Using Multi-Spectral Imagery of Pearl River Delta Coast, China
Author
Chunzhu Wei 1 ; Zhao, Qianying 2 ; Lu, Yang 3 ; Fu, Dongjie 4   VIAFID ORCID Logo 

 School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China; [email protected]; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China 
 School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] 
 Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK; [email protected] 
 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 
First page
3123
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2565699842
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.