It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Correlation-based Hebbian plasticity is thought to shape neuronal connectivity during development and learning, whereas homeostatic plasticity would stabilize network activity. Here we investigate another, new aspect of this dichotomy: Can Hebbian associative properties also emerge as a network effect from a plasticity rule based on homeostatic principles on the neuronal level? To address this question, we simulated a recurrent network of leaky integrate-and-fire neurons, in which excitatory connections are subject to a structural plasticity rule based on firing rate homeostasis. We show that a subgroup of neurons develop stronger within-group connectivity as a consequence of receiving stronger external stimulation. In an experimentally well-documented scenario we show that feature specific connectivity, similar to what has been observed in rodent visual cortex, can emerge from such a plasticity rule. The experience-dependent structural changes triggered by stimulation are long-lasting and decay only slowly when the neurons are exposed again to unspecific external inputs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer