Full Text

Turn on search term navigation

Copyright © 2021 Rui Jin and Qiang Niu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Fabric defect detection is particularly remarkable because of the large textile production demand in China. Traditional manual detection method is inefficient, time-consuming, laborious, and costly. A deep learning technique is proposed in this work to perform automatic fabric defect detection by improving a YOLOv5 object detection algorithm. A teacher-student architecture is used to handle the shortage of fabric defect images. Specifically, a deep teacher network could precisely recognize fabric defects. After information distillation, a shallow student network could do the same thing in real-time with minimal performance degeneration. Moreover, multitask learning is introduced by simultaneously detecting ubiquitous and specific defects. Focal loss function and central constraints are introduced to improve the recognition performance. Evaluations are performed on the publicly available Tianchi AI and TILDA databases. Results indicate that the proposed method performs well compared with other methods and has excellent defect detection ability in the collected textile images.

Details

Title
Automatic Fabric Defect Detection Based on an Improved YOLOv5
Author
Jin, Rui 1   VIAFID ORCID Logo  ; Niu, Qiang 2   VIAFID ORCID Logo 

 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China; Changzhou Vocational Institute of Textile and Garment, Changzhou, China 
 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 
Editor
Paolo Spagnolo
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580585838
Copyright
Copyright © 2021 Rui Jin and Qiang Niu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/