Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sleep staging has always been a hot topic in the field of sleep medicine, and it is the cornerstone of research on sleep problems. At present, sleep staging heavily relies on manual interpretation, which is a time-consuming and laborious task with subjective interpretation factors. In this paper, we propose an automatic sleep stage classification model based on the Bidirectional Recurrent Neural Network (BiRNN) with data bundling augmentation and label redirection for accurate sleep staging. Through extensive analysis, we discovered that the incorrect classification labels are primarily concentrated in the transition and nonrapid eye movement stage I (N1). Therefore, our model utilizes a sliding window input to enhance data bundling and an attention mechanism to improve feature enhancement after label redirection. This approach focuses on mining latent features during the N1 and transition periods, which can further improve the network model’s classification performance. We evaluated on multiple public datasets and achieved an overall accuracy rate of 87.3%, with the highest accuracy rate reaching 93.5%. Additionally, the network model’s macro F1 score reached 82.5%. Finally, we used the optimal network model to study the impact of different EEG channels on the accuracy of each sleep stage.

Details

Title
Automatic Sleep Staging Using BiRNN with Data Augmentation and Label Redirection
Author
Gong, Yulin 1   VIAFID ORCID Logo  ; Wang, Fatong 1 ; Lv, Yudan 2 ; Liu, Chang 2 ; Li, Tianxing 1 

 School of Electronic Information, Changchun University of Science and Technology, Changchun 130022, China; [email protected] (F.W.); [email protected] (T.L.) 
 The Department of Neurology, Jilin University, Changchun 130012, China; [email protected] (Y.L.); [email protected] (C.L.) 
First page
2394
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824010241
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.