Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although direct ink writing (DIW) allows the rapid fabrication of unique 3D printed objects, the resins—or “inks”—available for this technique are in short supply and often offer little functionality, leading to the development of new, custom inks. However, when creating new inks, the ability of the ink to lead to a successful print, or the “printability,” must be considered. Thus, this work examined the effect of filler composition/concentration, printing parameters, and lattice structure on the printability of new polysiloxane inks incorporating high concentrations (50–70 wt%) of metallic and ceramic fillers as well as emulsions. Results suggest that strut diameter and spacing ratio have the most influence on the printability of DIW materials and that the printability of silica- and metal-filled inks is more predictable than ceramic-filled inks. Additionally, higher filler loadings and SC geometries led to stiffer printed parts than lower loadings and FCT geometries, and metal-filled inks were more thermally stable than ceramic-filled inks. The findings in this work provide important insights into the tradeoffs associated with the development of unique and/or multifunctional DIW inks, printability, and the final material’s performance.

Details

Title
Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing
Author
Legett, Shelbie A 1   VIAFID ORCID Logo  ; Torres, Xavier 1   VIAFID ORCID Logo  ; Schmalzer, Andrew M 1   VIAFID ORCID Logo  ; Pacheco, Adam 1 ; Stockdale, John R 1 ; Talley, Samantha 2   VIAFID ORCID Logo  ; Robison, Tom 2 ; Labouriau, Andrea 1   VIAFID ORCID Logo 

 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 
 Kansas City National Security Campus Managed by Honeywell Federal Manufacturing & Technologies LLC, Kansas City, MO 64147, USA 
First page
4661
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734713196
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.