It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mineral carbonation is considered to be the most stable mechanism for the sequestration of CO2. This study comprises a comparative review of the effect of ball milling on the CO2 uptake of ultramafic/mafic lithologies, which are the most promising rocks for the mineralization of CO2. Samples of dunite, pyroxenite, olivine basalt and of a dolerite quarry waste material were previously subjected to ball milling to produce ultrafine powders with enhanced CO2 uptake. The optimum milling conditions were determined through selective CO2 chemisorption followed by temperature-programmed desorption (TPD) experiments, revealing that the CO2 uptake of the studied lithologies can be substantially enhanced via mechanical activation. Here, all these data are compared, demonstrating that the behavior of each rock under the effect of ball milling is predominantly controlled by the mineralogical composition of the starting rock materials. The ball-milled rock with the highest CO2 uptake is the dunite, followed by the olivine basalt, the pyroxenite and the dolerite. The increased CO2 uptake after ball milling is mainly attributed to the reduction of particle size to the nanoscale range, thus creating more adsorption sites per gram basis, as well as to the structural disordering of the constituent silicate minerals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, 1678 Nicosia, Cyprus
2 Department of Civil and Environmental Engineering, University of Cyprus, 1678 Nicosia, Cyprus
3 Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 4036 Stavanger, Norway
4 Department of Chemistry, Heterogeneous Catalysis Lab, University of Cyprus, 1678 Nicosia, Cyprus
5 Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus