Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of information technology, it has become increasingly important to use intelligent algorithms to diagnose mechanical equipment faults based on vibration signals of rolling bearings. However, with the application of high-performance sensors in the Internet of Things, the complexity of real-time classification of multichannel, multidimensional sensor signals is increasing. In view of the need for intelligent methods for fault diagnosis methods of mechanical equipment, the generalization ability of fault diagnosis models also needs to be further strengthened. In this context, in order to make fault diagnosis intelligent and efficient, a bearing fault diagnosis method based on spectrum map information fusion and convolutional neural network (CNN) is proposed. First, short-time Fourier transform (STFT) is used to analyze the multichannel vibration signal of the rolling bearing and obtain the frequency domain information of the signal over a period of time. Second, the information fusion is converted into two-dimensional (2D) images, which are input into CNN for training, and the bearing fault identification model is obtained. Next, the frequency domain information of each signal is converted into a 2D spectrum map, which is used as a CNN training dataset to train a bearing fault identification model. Finally, the diagnostic model is validated using the existing datasets. The results show that the accuracy of fault diagnosis using the proposed bearing is greater than 99.4% and can even reach 100%. The proposed method considerably reduces the workload of the diagnosis process, with strong robustness and generalization ability.

Details

Title
A Bearing Fault Diagnosis Method Based on Spectrum Map Information Fusion and Convolutional Neural Network
Author
Wang, Baiyang 1   VIAFID ORCID Logo  ; Feng, Guifang 2   VIAFID ORCID Logo  ; Huo, Dongyue 1   VIAFID ORCID Logo  ; Kang, Yuyun 3   VIAFID ORCID Logo 

 School of Information Science and Engineering, Linyi University, Linyi 276000, China; [email protected] (B.W.); [email protected] (D.H.) 
 School of Life Science, Linyi University, Linyi 276000, China; [email protected]; Center for International Education, Manila Campus, Philippine Christian University, Manila 1004, Philippines 
 School of Logistics, Linyi University, Linyi 276000, China 
First page
1426
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694071097
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.