Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Several biochars were synthesized from olive stones and used as supports for TiO2, as an active semiconductor, and Pt as a co-catalyst (Pt/TiO2-PyCF and Pt/TiO2-AC). A third carbon-supported photocatalyst was prepared from commercial mesoporous carbon (Pt/TiO2-MCF). Moreover, a Pt/TiO2 solid based on Evonik P25 was used as a reference. The biochars used as supports transferred, to a large extent, their physical and chemical properties to the final photocatalysts. The synthesized catalysts were tested for hydrogen production from aqueous glycerol photoreforming. The results indicated that a mesoporous nature and small particle size of the photocatalyst lead to better H2 production. The analysis of the operational reaction conditions revealed that the H2 evolution rate was not proportional to the mass of the photocatalyst used, since, at high photocatalyst loading, the hydrogen production decreased because of the light scattering and reflection phenomena that caused a reduction in the light penetration depth. When expressed per gram of TiO2, the activity of Pt/TiO2-PyCF is almost 4-times higher than that of Pt/TiO2 (1079 and 273 mmol H2/gTiO2, respectively), which points to the positive effect of an adequate dispersion of a TiO2 phase on a carbonaceous support, forming a highly dispersed and homogeneously distributed titanium dioxide phase. Throughout a 12 h reaction period, the H2 production rate progressively decreases, while the CO2 production rate increases continuously. This behavior is compatible with an initial period when glycerol dehydrogenation to glyceraldehyde and/or dihydroxyacetone and hydrogen predominates, followed by a period in which comparatively slower C-C cleavage reactions begin to occur, thus generating both H2 and CO2.

Details

Title
Biochars from Olive Stones as Carbonaceous Support in Pt/TiO2-Carbon Photocatalysts and Application in Hydrogen Production from Aqueous Glycerol Photoreforming
Author
Escamilla-Mejía, Juan Carlos; Hidalgo-Carrillo, Jesús  VIAFID ORCID Logo  ; Martín-Gómez, Juan  VIAFID ORCID Logo  ; López-Tenllado, Francisco J  VIAFID ORCID Logo  ; Estévez, Rafael  VIAFID ORCID Logo  ; Marinas, Alberto  VIAFID ORCID Logo  ; Urbano, Francisco J  VIAFID ORCID Logo 
First page
1511
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812509253
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.