Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objectives: Investigate the biomechanical characteristics in tracheostomized patients with aspiration following acquired brain injury (ABI) and further explore the relationship between the biomechanical characteristics and aspiration. Methods: This is a single-center cross-sectional study. The tracheostomized patients with aspiration following ABI and age-matched healthy controls were recruited. The biomechanical characteristics, including velopharynx (VP) maximal pressure, tongue base (TB) maximal pressure, upper esophageal sphincter (UES) residual pressure, UES relaxation duration, and subglottic pressure, were examined by high-resolution manometry and computational fluid dynamics simulation analysis. The penetration–aspiration scale (PAS) score was evaluated by a videofluoroscopic swallowing study. Results: Fifteen healthy subjects and fifteen tracheostomized patients with aspiration following ABI were included. The decreased VP maximal pressure, increased UES residual pressure, and shortened UES relaxation duration were found in the patient group compared with the control group (p < 0.05). Furthermore, the subglottic pressure significantly decreased in patients (p < 0.05), while no significant difference was found in TB maximal pressure between groups (p > 0.05). In addition, in the patient group, VP maximal pressure (rs = −0.439; p = 0.015), UES relaxation duration (rs = −0.532; p = 0.002), and the subglottic pressure (rs = −0.775; p < 0.001) were negatively correlated with the PAS score, while UES residual pressure (rs = 0.807; p < 0.001) was positively correlated with the PAS score (p < 0.05), the correlation between TB maximal pressure and PAS score (rs = −0.315; p = 0.090) did not reach statistical significance. Conclusions: The biomechanical characteristics in tracheostomized patients with aspiration following ABI might manifest as decreased VP maximal pressure and subglottic pressure, increased UES residual pressure, and shortened UES relaxation duration, in which VP maximal pressure, UES relaxation duration, subglottic pressure, and UES residual pressure were correlated with aspiration.

Details

Title
The Biomechanical Characteristics of Swallowing in Tracheostomized Patients with Aspiration following Acquired Brain Injury: A Cross-Sectional Study
Author
Xiao-Xiao, Han 1 ; Qiao, Jia 1   VIAFID ORCID Logo  ; Zhan-Ao Meng 2 ; Dong-Mei, Pan 3 ; Zhang, Ke 2 ; Xiao-Mei, Wei 1 ; Zu-Lin, Dou 1 

 Department of Rehabilitation Medicine, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou 510630, China 
 Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou 510630, China 
 Department of mechanical and automotive engineering, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510641, China 
First page
91
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767184744
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.