Content area
Full Text
letters to nature
15. Trettin, U. Wechselwirkung von Enantiomeren in unverdnnten Flssigkeiten. Thesis, Univ. Tbingen (1993).
16. Schurig, V. Enantiomer analysis by complexation GC: scope, merits, limitations. J. Chromatogr. 441, 135153 (1988).
17. Meinwald, J. et al. Inhalational anesthetics stereochemistry: Optical resolution of halothane, enurane and isourane. Science 251, 560561 (1991).
18. Koppenhoefer, B. & Bayer, E. Chiral recognition in the resolution of enantiomers by GLC. Chromatographia 19, 123130 (1984).
19. Knig, W. A. Separation of enantiomers by capillary GC with chiral stationary phases J. High Resolut. Chromatogr. Chromatogr. Commun. 5, 588595 (1982).
20. Kubo, Y., Maeda, S., Tokita, S. & Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature 382, 522524 (1996).
21. James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Chiral discrimination of monosaccharides using a uorescent molecular sensor. Nature 374, 345347 (1995).
22. Ide, J., Nakamoto, T. & Moriizumi, T. Discrimination of aromatic optical isomers using quartz resonator sensors. Sens. Actuators A 49, 7378 (1995).
23. Sauerbrey, G. Verwendung von Schwingquarzen zur Wagung dnner Schichten und zur Mikrowagung. Z. Phys. 155, 206222 (1959).
Acknowledgements. We thank H.-G. Brendle, R. Schlunk and B. Christian at the Institute of Organic Chemistry of the University of Tbingen for providing the enantioselective polymers and the chiral analyte N-TFA-Ala-OMe. This work was supported by the Deutsche Forschungsgemeinschaft.
Correspondence and requests for materials should be addressed to W.G. (e-mail: [email protected]).
A biosensor that uses ion-channel switches
B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King,P. D. J. Osman, B. Raguse, L. Wieczorek & R. J. Pace*
Co-operative Research Centre for Molecular Engineering & Technology, 126 Greville Street, Chatswood NSW 2067, Australia
.........................................................................................................................
Biosensors are molecular sensors that combine a biological recognition mechanism with a physical transduction technique. They provide a new class of inexpensive, portable instrument that permit sophisticated analytical measurements to be undertaken rapidly at decentralized locations1. However, the adoption of biosensors for practical applications other than the measurement of blood glucose is currently limited by the expense, insensitivity and inexibility of the available transduction methods. Here we describe the development of a biosensing technique in which the conductance of a population of molecular ion channels is switched by the recognition event. The approach mimics biological sensory functions2,3 and can be used...