Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi−Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi1Sb1@C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g−1 at 1 A g−1 over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi1Sb1@C electrode: (Bi,Sb) Na(Bi,Sb) Na3(Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi1Sb1@C electrode during the cell operation.

Details

Title
Bismuth−Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage
Author
Ma, Wensheng; Yu, Bin; Tan, Fuquan; Gao, Hui  VIAFID ORCID Logo  ; Zhang, Zhonghua
First page
2189
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791671577
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.