Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Herein, using black talc as a carrier, a ternary black talc-TiO2/ZnO composite photocatalyst was prepared by the sol-gel method, and the effect of the black talc on the hetero-structure properties of the TiO2 and ZnO was systematically studied. The prepared composite photocatalyst showed an excellent degradation performance of the pollutant, where black talc plays an important role in promoting the interface interaction by enhancing the contact area between the TiO2 and ZnO. Moreover, the free carbon element doping in black talc favors the formation of more oxygen vacancies, thereby improving the response as a photocatalyst in visible light. In addition, the carbon in the black talc can also adsorb organic pollutants and enrich the surroundings of the photocatalyst with pollutants, so it further improves the catalytic efficiency of the photocatalyst. Under UV irradiation, the degradation rate of Rhodamine B on black talc-TiO2/ZnO was found 3.3 times higher than that of black talc-TiO2 with good stability.

Details

Title
Black Talc-Based TiO2/ZnO Composite for Enhanced UV-Vis Photocatalysis Performance
Author
Shuai, Huan 1   VIAFID ORCID Logo  ; Wang, Jiao 2 ; Wang, Xianguang 3 ; Du, Gaoxiang 4 

 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; [email protected]; School of Basic Education, Beijing Polytechnic College, Beijing 100042, China 
 School of Basic Education, Beijing Polytechnic College, Beijing 100042, China 
 Jiangxi Mineral Resources Guarantee Service Center, Nanchang 330025, China 
 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; [email protected] 
First page
6474
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596056101
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.