Content area

Abstract

This paper deals with the semi-functional partial linear regression model \[Y={{\varvec{X}}}^\mathrm{T}{\varvec{\beta }}+m({\varvec{\chi }})+\varepsilon \] under \[\alpha \]-mixing conditions. \[{\varvec{\beta }} \in \mathbb {R}^{p}\] and \[m(\cdot )\] denote an unknown vector and an unknown smooth real-valued operator, respectively. The covariates \[{{\varvec{X}}}\] and \[{\varvec{\chi }}\] are valued in \[\mathbb {R}^{p}\] and some infinite-dimensional space, respectively, and the random error \[\varepsilon \] verifies \[\mathbb {E}(\varepsilon |{{\varvec{X}}},{\varvec{\chi }})=0\]. Naïve and wild bootstrap procedures are proposed to approximate the distribution of kernel-based estimators of \[{\varvec{\beta }}\] and \[m(\chi )\], and their asymptotic validities are obtained. A simulation study shows the behavior (on finite sample sizes) of the proposed bootstrap methodology when applied to construct confidence intervals, while an application to real data concerning electricity market illustrates its usefulness in practice.

Details

Title
Bootstrap in semi-functional partial linear regression under dependence
Author
Aneiros, Germán 1   VIAFID ORCID Logo  ; Raña, Paula 1 ; Vieu, Philippe 2 ; Vilar, Juan 1 

 Departamento de Matemáticas, Universidade da Coruña, A Coruña, Spain 
 Institut de Mathématiques, Université Paul Sabatier, Toulouse, France 
Pages
659-679
Publication year
2018
Publication date
Sep 2018
Publisher
Springer Nature B.V.
ISSN
11330686
e-ISSN
18638260
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2112047208
Copyright
TEST is a copyright of Springer, (2017). All Rights Reserved.