Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Brain–computer interfaces (BCIs) are widely utilized in control applications for people with severe physical disabilities. Several researchers have aimed to develop practical brain-controlled wheelchairs. An existing electroencephalogram (EEG)-based BCI based on steady-state visually evoked potential (SSVEP) was developed for device control. This study utilized a quick-response (QR) code visual stimulus pattern for a robust existing system. Four commands were generated using the proposed visual stimulation pattern with four flickering frequencies. Moreover, we employed a relative power spectrum density (PSD) method for the SSVEP feature extraction and compared it with an absolute PSD method. We designed experiments to verify the efficiency of the proposed system. The results revealed that the proposed SSVEP method and algorithm yielded an average classification accuracy of approximately 92% in real-time processing. For the wheelchair simulated via independent-based control, the proposed BCI control required approximately five-fold more time than the keyboard control for real-time control. The proposed SSVEP method using a QR code pattern can be used for BCI-based wheelchair control. However, it suffers from visual fatigue owing to long-time continuous control. We will verify and enhance the proposed system for wheelchair control in people with severe physical disabilities.

Details

Title
Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control
Author
Siribunyaphat, Nannaphat 1   VIAFID ORCID Logo  ; Punsawad, Yunyong 2   VIAFID ORCID Logo 

 School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand 
 School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand; Informatics Innovative Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand 
First page
2069
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779684279
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.