Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Switching operations in intelligent substations generate a wide range of extremely strong and asymmetric transient spatial electromagnetic fields, and this complex transient electromagnetic field can have a coupling effect with the wireless network sink node equipment cables. We conducted a study on the networking method of wireless network equipment in smart substations and analyzed the types of sink node cables used. In the GIS room of the 110 kV GIS smart substation, the transient spatial electromagnetic field generated by switching operation and the transient induced current of the sink node cable under different operating conditions were tested and obtained, and the time domain and frequency domain comparative analysis was performed. A near-field coupling model of the asymmetric and non-uniform cable transient spatial electric field at the sink node is established, and the validity of the model is verified by comparing and analyzing the measurement and simulation results. The results of the study can provide a reference for transient electromagnetic disturbances in 110 kV GIS intelligent substations and contribute to improving the reliability of wireless network equipment operation.

Details

Title
Cable Coupling Characteristics of Wireless Network Convergence Nodes by Transient Electromagnetic Fields in Intelligent Substations
Author
Yang, Zhichao 1 ; Li, Qian 2 ; Guo, Xin 1 ; Zhao, Mingmin 1 ; Zhao, Peng 1 ; Lin, Shanshan 1 ; Zhang, Weidong 2 

 China Electric Power Research Institute Co., Ltd., Beijing 100192, China 
 State Key Laboratory of New Energy Power Systems, North China Electric Power University, Beijing 102206, China 
First page
959
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819457590
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.