Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Autonomous driving technology and vehicle-to-vehicle communication technology make the hybrid driving of connected and automated vehicles (CAVs) and regular vehicles (RVs) a long-existing phenomenon in the coming future. Among the existing studies, IDM models are mostly used to study the performance of homogeneous traffic flow. To explore the stability of mixed traffic flow, an extended intelligent driver model (IDM) based car-following model was proposed for mixed traffic flow (MTF) with both CAVs and RVs, considering the headway, the speed and acceleration of multiple front vehicles, as well as the response characteristics of RV drivers. Through the linear stability analysis, the criterion for the stability of MTFs was derived, and the relationship among the penetration rate of CAVs, equilibrium velocity and traffic stability in MTF are discussed. Based on the above theoretical model, a numerical simulation was conducted in two typical scenarios of starting and braking. The results showed that, at the microscopic scale, the vehicle in the Cooperative Adaptive Cruise Control (CACC) mode could significantly decelerate in response to the interference from other vehicles in the same traffic environment. At the macroscopic scale, as the penetration rate of CAVs increased, the overall acceleration fluctuation of the traffic flow decreased. At the same penetration rate of CAVs, the higher density of CAVs coincided with the higher stability of the MTF. When the penetration rate of CAVs was 50%, the degree of distribution had the greatest impact on the MTF. When the penetration rate of CAVs exceeded 70%, the degree of distribution had little impact on the MTF. This research can provide basic theoretical support for the management and control of MTF in the future.

Details

Title
A Car-Following Model for Mixed Traffic Flows in Intelligent Connected Vehicle Environment Considering Driver Response Characteristics
Author
Wang, Yunze 1 ; Xu, Ranran 1 ; Zhang, Ke 2   VIAFID ORCID Logo 

 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang 050043, China; School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 
 College of Information Engineering, Fuyang Normal University, Fuyang 236041, China 
First page
11010
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711516266
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.