Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The culture growth and carotenogenic activity of two Greek Dunaliella salina strains (AthU-Al D30 and AthU-Al D31) under stress conditions are investigated herein, with emphasis on β-carotene production as well as on lutein and zeaxanthin. In particular, the strains were cultivated in “standard” conditions (60 ‰ salinity and 1.18 M of NaNO3), under salinity stress conditions (160 ‰ salinity and 1.18 M of NaNO3) and under nitrogen deprivation conditions (60 ‰ salinity and 0 M of NaNO3). In addition to the two Greek strains, the D. salina CCAP 19/18 strain, which has been extensively studied regarding carotenogenesis, is included in this study as a reference. All three strains were found to produce increased amounts of β-carotene when cultivated under nitrogen deprivation conditions, while the AthU-Al D31 strain also produced high amounts of carotenoids under salt stress. The HPLC carotenoid profiles of the strains revealed reduced production of lutein in nitrogen deprivation conditions, coupled with a high production of β-carotene. The strains exhibited various responses in terms of carotenogenic activity, indicating an intraspecific variation in the metabolic reactions related to carotenogenesis.

Details

Title
Carotenogenic Activity of Two Hypersaline Greek Dunaliella salina Strains under Nitrogen Deprivation and Salinity Stress
Author
Chantzistrountsiou, Xanthi 1 ; Ntzouvaras, Alexandros 1 ; Papadaki, Sofia 2   VIAFID ORCID Logo  ; Tsirigoti, Amersa 1 ; Tzovenis, Ioannis 1 ; Economou-Amilli, Athena 1 

 Sector of Ecology & Systematics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece 
 School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechneiou,15780 Athens, Greece 
First page
241
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767303502
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.