Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chipless radio frequency identification (RFID) technology has been widely used in the field of structural health monitoring (SHM), but most of the current research mainly focuses on the detection of mechanical properties and there are few studies on the multi-physical parameters (for example, temperature and humidity) in the climatic environment around the structure. Thus, it is necessary to design a small and compact sensor for multi-parameter detection. This paper proposes a multi-parameter chipless RFID sensor based on microstrip coupling, which supports 4-bit ID code and integrates two detection functions of temperature and humidity. Through linear normalization fitting, the sensitivity of the sensor is about 2.18 MHz/RH in the ambient relative humidity test and the sensitivity of the sensor is about 898.63 KHz/°C in the experimental test of water bath heating from 24.6 °C to 75 °C. In addition, this paper proposes an engineering application detection method, designs a lightweight dynamic spectrum detection and wireless transmission platform based on a lightweight vector network analyzer (VNA) and realizes the real-time extraction and transmission of RFID spectrum sensing data. The means are more flexible and economical than traditional experimental scenarios.

Details

Title
Characteristic Analysis of a Chipless RFID Sensor Based on Multi-Parameter Sensing and an Intelligent Detection Method
Author
Liu, Luyi  VIAFID ORCID Logo  ; Chen, Lan
First page
6027
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706455571
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.