Full Text

Turn on search term navigation

Copyright © 2019 Chuxi Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Liver injury can be caused by various harmful factors since the liver is considered the key organ for detoxifying endogenous and exogenous substances. Hepatocyte growth factor (HGF) can regulate redox homeostasis through the expression of antioxidant proteins when the liver is under injury. However, HGF is easily degraded. In this study, we produced three kinds of HGF-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles with an initial addition of 2 μg HGF (NPs-HGF-2 μg), 4 μg HGF (NPs-HGF-4 μg), and drug-free nanoparticles (NPs) using the W/O/W emulsion-solvent evaporation method in accordance with our patent. The morphology and physical characteristics were analyzed, and effects of HGF-loaded PLGA nanoparticles on a CCl4-induced acute liver injury mouse model were investigated and compared with HGF solutions. We observed that the morphology and the physical characteristics of the nanoparticles were almost the same, with similar sizes, polydispersity, and zeta potential. HGF-loaded PLGA nanoparticles maintained higher HGF concentrations for a longer period of time in blood and liver tissues. HGF-loaded PLGA nanoparticles increased the SOD activity and GPX levels, decreased the MDA levels in the liver, reduced the necrotic areas of the liver, and decreased the levels of AST, ALT, ALP, T-BIL, BUN, and Scr in blood. In conclusion, our technique for preparing HGF-loaded PLGA nanoparticles was stable and the products were of good quality. HGF-loaded PLGA nanoparticles could provide greater therapeutic benefits on CCl4-induced acute liver injury, including antilipid peroxidation and a reduction in indicator enzymes of liver injury.

Details

Title
Characterization and Evaluation of HGF-Loaded PLGA Nanoparticles in a CCl4-Induced Acute Liver Injury Mouse Model
Author
Lin, Chuxi 1 ; Wang, Xueer 2 ; Liu, Nuyun 3 ; Peng, Qing 4 ; Yang, Li 4 ; Zhang, Lin 2   VIAFID ORCID Logo  ; Gao, Yi 5   VIAFID ORCID Logo 

 Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China 
 Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China 
 Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China 
 Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China 
 Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China 
Editor
Peter Reiss
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2307968399
Copyright
Copyright © 2019 Chuxi Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/