Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An easily recoverable photo-catalyst in solid form has been synthesized and applied in catalytic ozonation in the presence of primidone. Maghemite, graphene oxide and titania (FeGOTi) constituted the solid. Additionally, titania (TiO2) and graphene oxide–titania (GOTi) catalysts were also tested for comparative reasons. The main characteristics of FeGOTi were 144 m2/g of surface area; a 1.29 Raman D and G band intensity ratio; a 26-emu g−1 magnetic moment; maghemite, anatase and brookite main crystalline forms; and a 1.83 eV band gap so the catalyst can absorb up to the visible red region (677 nm). Single ozonation, photolysis, photolytic ozonation (PhOz), catalytic ozonation (CatOz) and photocatalytic ozonation (PhCatOz) were applied to remove primidone. In the presence of ozone, the complete removal of primidone was experienced in less than 15 min. In terms of mineralization, the best catalyst was GOTi in the PhCatOz processes (100% mineralization in 2 h). Meanwhile, the FeGOTi catalyst was the most efficient in CatOz. FeGOTi led, in all cases, to the highest formation of HO radicals and the lowest ozone demand. The reuse of the FeGOTi catalyst led to some loss of mineralization efficacy after four runs, likely due to C deposition, the small lixiviation of graphene oxide and Fe oxidation.

Details

Title
Checking the Efficiency of a Magnetic Graphene Oxide–Titania Material for Catalytic and Photocatalytic Ozonation Reactions in Water
Author
Checa, Manuel  VIAFID ORCID Logo  ; Montes, Vicente; Rivas, Javier  VIAFID ORCID Logo  ; Beltrán, Fernando J  VIAFID ORCID Logo 
First page
1587
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756674411
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.