It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a novel, lightweight method to generate animated graphical interchange format images (GIFs) using the computational resources of a client device. The method analyzes an acoustic feature from the climax section of an audio file to estimate the timestamp corresponding to the maximum pitch. Further, it processes a small video segment to generate the GIF instead of processing the entire video. This makes the proposed method computationally efficient, unlike baseline approaches that use entire videos to create GIFs. The proposed method retrieves and uses the audio file and video segment so that communication and storage efficiencies are improved in the GIF generation process. Experiments on a set of 16 videos show that the proposed approach is 3.76 times more computationally efficient than a baseline method on an Nvidia Jetson TX2. Additionally, in a qualitative evaluation, the GIFs generated using the proposed method received higher overall ratings compared to those generated by the baseline method. To the best of our knowledge, this is the first technique that uses an acoustic feature in the GIF generation process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Gachon University, Department of Computer Engineering, Seongnam, Korea (GRID:grid.256155.0) (ISNI:0000 0004 0647 2973)
2 Sungkyunkwan University (SKKU), Department of Computer Education, Seoul, Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)