Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution.

Details

Title
Clot Imaging Using Photostable Nanodiamond
Author
Francis, Samuel J 1 ; Torelli, Marco D 2   VIAFID ORCID Logo  ; Nunn, Nicholas A 2 ; Arepally, Gowthami M 1 ; Shenderova, Olga A 2 

 Division of Hematology, Duke University Medical Center, Duke University, Durham, NC 27710, USA 
 Adámas Nanotechnologies, Inc., Raleigh, NC 27617, USA 
First page
961
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791680196
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.