Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The study uses 30 years of the third generation of Advanced Very-High-Resolution Radiometer (AVHRR) NDVI3g monthly data from 1982 to 2012 to identify the natural clusters and important driving factors of the upstream watersheds in Taiwan through hierarchical cluster analysis (HCA) and redundancy analysis (RDA), respectively. Subsequently, as a result of HCA, six clusters were identified based on the 30 years of monthly NDVI data, delineating unique NDVI characteristics of the upstream watersheds. Additionally, based on the RDA results, environmental factors, including precipitation, temperature, slope, and aspect, can explain approximately 52% of the NDVI variance over the entire time series. Among environmental factors, nine factors were identified significantly through RDA analysis for explaining NDVI variance: average slope, temperature, flat slope, northeast-facing slope, rainfall, east-facing slope, southeast-facing slope, west-facing slope, and northwest-facing slope, which reflect an intimate connection between climatic and orthographic factors with vegetation. Furthermore, the rainfall and temperature represent different variations in all scenarios and seasons. With consideration of the characteristics of the clusters and significant environmental factors, corresponding climate change adaptation strategies are proposed for each cluster under climate change scenarios. Thus, the results provide insight to assess the natural clustering of the upstream watersheds in Taiwan, benefitting future sustainable watershed management.

Details

Title
Cluster and Redundancy Analyses of Taiwan Upstream Watersheds Based on Monthly 30 Years AVHRR NDVI3g Data
Author
Tsai, Hui Ping 1   VIAFID ORCID Logo  ; Wei-Ying, Wong 2   VIAFID ORCID Logo 

 Department of Civil Engineering, National Chung Hsing University, Taichung 40227, Taiwan; [email protected]; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan; Pervasive AI Research (PAIR) Labs, Hsinchu 300, Taiwan 
 Department of Civil Engineering, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] 
First page
1206
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2576377627
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.