Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The traditional temperature modeling method is based on the full heating of the accelerometer to achieve thermal balance, which is not suitable for the cold start-up phase of the micro-accelerometer. For decreasing the complex temperature drift of the cold start-up phase, a new temperature compensation method based on a high-order Fourier transform combined model is proposed. The system structure and repeatability test of the micro digital quartz flexible accelerometer are provided at first. Additionally, we analyzed where the complex temperature drift of the cold start-up phase comes from based on the system structure and repeatability test. Secondly, a high-order temperature compensation model combined with K-means clustering and the symbiotic organisms search (SOS) algorithm is established with repeatability test data as training data. To verify the proposed temperature compensation model, a test platform was built to transmit the measured values before and after compensation with the proposed Fourier-related model and the other time-related model, which is also a model aiming at temperature compensation in the cold start-up phase. The experimental results indicate that the proposed method achieves better compensation accuracy compared with the traditional temperature compensation methods and the time-related compensation model. Furthermore, the compensation for the cold start-up phase has no effect on the original accuracy over the whole temperature range. The stability of the accelerometer can be significantly improved to about 30 μg in the start-up phase of different temperatures after compensation.

Details

Title
Cold Starting Temperature Drift Modeling and Compensation of Micro-Accelerometer Based on High-Order Fourier Transform
Author
Wang, Yi 1 ; Sun, Xinglin 2   VIAFID ORCID Logo  ; Huang, Tiantian 2   VIAFID ORCID Logo  ; Ye, Lingyun 2 ; Song, Kaichen 1 

 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310007, China; [email protected] (Y.W.); [email protected] (K.S.) 
 College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310007, China; [email protected] (T.H.); [email protected] (L.Y.) 
First page
413
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642436947
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.