Full Text

Turn on search term navigation

Copyright © 2021 Hong Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Aiming at the problem that traditional fixed base stations cannot provide good signal coverage due to geographical factors, which may reduce the efficiency of task offloading, a collaborate task offloading strategy using improved genetic algorithm in mobile edge computing (MEC) is proposed by introducing the unmanned aerial vehicle (UAV) cluster. First, for the scenario of the UAV cluster serving multiple ground terminals, a collaborative task offloading model is formulated to offload the tasks to UAVs or the base station selectively. Then, an objective function and related constraints are put forward to minimize the time delay and energy consumption by analysis of those in the communication and computing process in the system while considering many factors. Then, the improved genetic algorithm is introduced to solve the optimization problem, obtaining the optimal collaborative task offloading strategy. To verify the performance of the proposed method, simulations are conducted on MATLAB. Simulation results showed that the joint utilization of UAV and MEC improves the offloading efficiency of the proposed strategy. When the number of UAVs is 12, the total utility is up to 1.83 and the task completion time does not exceed 110 ms. In this case, the task can be reasonably offloaded to UAVs or accomplished locally.

Details

Title
Collaborative Task Offloading Strategy of UAV Cluster Using Improved Genetic Algorithm in Mobile Edge Computing
Author
Wang, Hong 1   VIAFID ORCID Logo 

 Department of Electronic Information Technology, Sichuan Modern Vocational College, Chengdu, Sichuan 610207, China 
Editor
Kaijian Xia
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16879600
e-ISSN
16879619
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2618118780
Copyright
Copyright © 2021 Hong Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/